

10. LEED RATING EVALUATION

In order to quantify the "green-ness" of a building, the United States Green Building Council (USGBC) utilizes a point system for sustainable design elements. The total points a building earns can receive a LEED Rating of Certified (26-32 points), Silver (33-38 points), Gold (39-51 points), or Platinum (greater than 51 points) (LEED). The SLCC is designed to LEED-NC v2.1 Standards. This section will evaluate the existing and proposed design with respect to this rating system.

10.1. ORIGINAL DESIGN RATING

A preliminary LEED analysis of the project design was conducted by the primary architect SmithGroup (Table 10.1). It is important to note that this facility has not gone through the LEED Submittal and Review Process and thus this analysis is not an official rating by the USGBC. Also, assumptions were made on several "maybe" points such as ID Credit 1. Here, innovation points were assumed to be garnered for an "educational case study" of visucentric design and for exceeding the recycled content requirement by at least 25%.

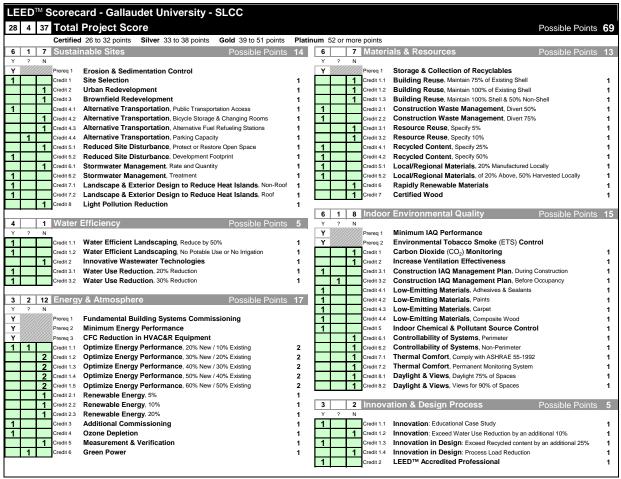


Table 10.1: LEED Scorecard for original SLCC design.

Patrick B. Murphy Mechanical Option AE Senior Thesis Final Report

The results of this LEED analysis show that the project expects to earn 28 points and thus a "LEED Certified" Rating. The point for Sustainable Sites Credit 7.2 for reducing the urban heat island effect is expected to be earned because the original design includes a highly reflective "cool roof." Some notable credits where points are not earned are the Sustainable Sites Credit 6.1 and at least eight (8) of ten (10) Energy and Atmosphere Credits (EA CR 1.1-1.5).

10.1.1. SUSTAINABLE SITES CREDIT 6.1

The intent for LEED-NC v2.1 SS CR 6.1 is to "limit disruption and pollution of natural water flows by managing stormwater runoff." In order to gain a point for this credit one of two requirements must be met: if the existing site is greater than 50% impervious by area, the post-construction site must have at least 25% less impervious area; if the existing site is less than 50% impervious by area, the post-construction site impervious area must not exceed that of the original site (LEED).

The calculations for the Sustainable Sites Credit 6.1 for the actual site design may be found in Table 10.2 below. The undeveloped site has over 65% impervious surface area so the post-construction site must have 25% less impervious area. These results show that the actual site design increases the impervious area of the site. While pavement area is reduced from the original site, the building (primarily the roof) increases the impervious area. Therefore this credit is not earned for the actual site design.

	Annual Site Stormwater Runoff							
	Runoff	Runoff Undeveloped Site Actual Design				n		
	Coefficient	Area [SF]	% of Site	Runoff [CF]	Area [SF]	% of Site	Runoff [CF	
Total Pervious:	0.00	26665	34.4%	0	13260	17.1%	0	
Total Impervious:	1.00	50935	65.6%	163968	64340	82.9%	207121	
TOTAL		77600		163968	77600		207121	
				Percent Red		rious Area = nts earned =	-26.3% <mark>0</mark>	

 Table 10.2: Sustainable Sites Credit 6.1 calculation for original SLCC design.

10.1.2. ENERGY & ATMOSPHERE CREDIT 1

The LEED-NC v2.1 EA Credit 1 is intended to "achieve increasing levels of energy performance above the prerequisite standard (ASHRAE Std. 90.1-1999) to reduce environmental impacts associated with excessive energy use" (LEED). Points are awarded for reducing the design energy cost relative to the energy cost budget for energy systems regulated by ASHRAE Std. 90.1-1999. For new buildings one (1) point is earned for a 15% reduction in annual energy cost, and an additional point is awarded for each 5% greater reduction up to ten (10) points for a 60% energy cost reduction.

The calculations for the energy budget case and original annual energy cost for EA CR 1 may be found in Table 10.3 and Table 10.4 on below, and the LEED points earned can be seen in Table 10.5 on page 59.

Budget Case Da	ata (Per ASHRAE Std	90.1-1999)			
End Use	Energy Type	Electric [kWh]	Oil [kBtu]	Energy Use [10 ³ Btu]	Annual Cost
Regulated					
Lighting	Electric	304,679		1,039,565	\$27,543
Space Heating	Oil		756,460	756,460	\$10,477
Space Heating	Electric				
Space Cooling	Electric			2,458,524	\$65,138
Fans / Pumps	Electric	225,330		768,826	\$20,370
Hot Water	Oil		300,750	300,750	\$4,165
Subtotal Regulated (ECB	5')	530,009	1,057,210	5,324,125	\$127,693
Non-Regulated					
Receptacles	Electric	978,965		3,340,229	\$25,937
Space Heating	Oil		15,030	15,030	\$208
Space cooling	Electric		1,294,311	1,294,311	\$34,292
Fans / Pumps	Electric	23155		79,005	\$2,093
Subtotal Non-Regulated		1,002,120	1,309,341	4,728,574	\$62,531
Total Building		1,532,129	2,366,551	10,052,699	\$190,224
ECB''				5,324,125	\$127,693

 Table 10.3: Energy cost budget for the SLCC.

Design Case LEED-NC EA CR 1 Summary		(Cool Roof, VAV System)						
End Use	Energy Type	Electric [kWh]	Oil [kBtu]	Energy Use [10 ³ Btu]	Annual Cost			
Regulated								
Lighting	Electric	223,695		763,246	\$20,222			
Space Heating	Oil		74,957	74,957	\$1,038			
Space Heating	Electric							
Space Cooling	Electric			2,167,121	\$57,417			
Fans / Pumps	Electric	176,864		603,461	\$15,989			
Subtotal Regulated (DEC	')	400,559	74,957	3,608,785	\$94,666			
Non-Regulated								
Receptacles	Electric	978,965		3,340,229	\$23,381			
Space Heating	Oil		15,030	15,030	\$199			
Space cooling	Electric		1,294,311	1,294,311	\$32,757			
Fans / Pumps	Electric	23155		79,005	\$1,999			
Subtotal Non-Regulated		1,002,120	1,309,341	4,728,574	\$58,336			
Total Building		1,402,679	1,384,298	8,337,359	\$153,002			
DEC''				3,608,785	\$94,666			

 Table 10.4: Annual energy costs of regulated, unregulated energy.

Design Case LE	ED-NC CR 7.1	Summary	(Cool Roo	f, VAV Syst	em)	
Energy & Cost Summary by Fuel	DEC" Use [10 ³ Btu]	DEC" Cost [\$]	ECB' Use [10 ³ Btu]	ECB' Cost [\$]	DEC" / Energy %	′ ECB' Cost %
Electricity Oil	3,533,828 74,957	\$93,628 \$1,038	4,266,915 1,057,210	\$113,051 \$14,642	82.8% 7.1%	82.8% 7.1%
Total	3,608,785	\$94,666	5,324,125	\$127,693		
		Percent	Savings = 100 >	« (ECB' \$ - DEC''	\$) / ECB' \$ =	25.9%
			Cree	Credit 1 Po dit 1 Points Poss	ints Earned = ibly Earned =	1 1

Table 10.5:
 LEED-NC v2.1
 Energy and Atmosphere Credit 1 calculation for original SLCC design.

These results confirm that the building energy use is expected to be about 25% less than the energy cost budget model. Because the second point of ES CR 1.1 requires at least a 25% reduction in energy this credit may or may not be earned. The submittal, review, and commissioning process would likely determine whether this point is earned or not.

10.2. PROPOSED DESIGN RATING

The proposals for this thesis should earn some of these points that were not counted towards the original design. The DOAS system alone saves significant energy and could earn five (5) and possibly six (6) EA Credit 1 points. The green roof and pervious pavement could also earn the SS Credit 6.1 point, and would help ensure the sixth EA Credit 1 point.

As a result, the proposed DOAS mechanical system in tandem with the proposed extensive green roof and new pavement will likely change the LEED Rating of the SLCC from Certified to Silver (Table 10.6).

	Project Score						Possible Points	s
Certifie	d 26 to 32 points Silver 33 to 38 points	Gold 39 to 51 points	Platinu	um 52 o				
	inable Sites	Possible Points	14	6		Materi	als & Resources Possible Points	s
? N				Y ?	N	L .	Otomore & Collection of Desceletion	
Prereq 1	Erosion & Sedimentation Control Site Selection			Y		Prereq 1	Storage & Collection of Recyclables	
Credit 1			1 1		1	Credit 1.1	Building Reuse, Maintain 75% of Existing Shell	
1 Credit 2 1 Credit 3	Urban Redevelopment		1		1	Credit 1.2	Building Reuse, Maintain 100% of Existing Shell	
	Brownfield Redevelopment		1	-	1	Credit 1.3	Building Reuse, Maintain 100% Shell & 50% Non-Shell	
Credit 4.1 Credit 4.2	Alternative Transportation, Public Transp		1	1	-	Credit 2.1 Credit 2.2	· · · · · · · · · · · · · · · · · · ·	
1 Credit 4.2 1 Credit 4.3	Alternative Transportation, Bicycle Storag Alternative Transportation, Alternative Fu		1	1	1	Credit 2.2 Credit 3.1		
1 Credit 4.3	-		1		$\frac{1}{1}$	Credit 3.1 Credit 3.2		
1 Credit 5.1	Reduced Site Disturbance, Protect or Res		1	1	11	Credit 3.2 Credit 4.1		
Credit 5.1			1	1	-	Credit 4.1 Credit 4.2		
Credit 5.2 Credit 6.1	Stormwater Management, Rate and Quan		1	1	-	Credit 5.1	Local/Regional Materials, 20% Manufactured Locally	
Credit 6.1	0	uty	1	1	-	Credit 5.2	Local/Regional Materials, 20% Manuacuted Locally	
Credit 0.2 Credit 7.1	Landscape & Exterior Design to Reduc	- Heat lelande Non Poof	1		1	Credit 5.2 Credit 6	Rapidly Renewable Materials	
Credit 7.1	Landscape & Exterior Design to Reduc		1	_	11	Credit 7	Certified Wood	
1 Credit 8	Light Pollution Reduction	e near Islands, Roor	1			Crouit /	Certified Wood	
ordatio	Light i onation reduction		· 1	6 1	8	Indoor	r Environmental Quality Possible Points	~
1 Water	Efficiency	Possible Points	5	Y ?	N	maoon		-
? N	Emolency		-	Y		Prereg 1	Minimum IAQ Performance	
Credit 1.1	Water Efficient Landscaping, Reduce by	50%	1	Y		Prereq 2	Environmental Tobacco Smoke (ETS) Control	
Credit 1.2			1	•	11	Credit 1	Carbon Dioxide (CO ₂) Monitoring	
1 Credit 2	Innovative Wastewater Technologies	ooo or no inigatori	1	_	ti	Credit 2	Increase Ventilation Effectiveness	
Credit 3.1	Water Use Reduction, 20% Reduction		1	1	+-	Credit 3.1	Construction IAQ Management Plan, During Construction	
Credit 3.2			1	1		Credit 3.2	Construction IAQ Management Plan, Before Occupancy	
	,,			1		Credit 4.1	Low-Emitting Materials, Adhesives & Sealants	
1 8 Energ	y & Atmosphere	Possible Points	17	1		Credit 4.2	Low-Emitting Materials, Paints	
? N				1		Credit 4.3	Low-Emitting Materials, Carpet	
Prereg 1	Fundamental Building Systems Comm	issioning		1		Credit 4.4	Low-Emitting Materials, Composite Wood	
Prereq 2	Minimum Energy Performance			1		Credit 5	Indoor Chemical & Pollutant Source Control	
Prereg 3	CFC Reduction in HVAC&R Equipment	ł		<u> </u>	1	Credit 6.1	Controllability of Systems, Perimeter	
Credit 1.1	Optimize Energy Performance, 20% Nev		2		11	Credit 6.2	Controllability of Systems, Non-Perimeter	
Credit 1.2		-	2		11	Credit 7.1		
Credit 1.3	Optimize Energy Performance, 40% Nev		2		1	Credit 7.2		
2 Credit 1.4	Optimize Energy Performance, 50% Nev		2		1	Credit 8.1	Daylight & Views, Daylight 75% of Spaces	
2 Credit 1.5	Optimize Energy Performance, 60% Nev	v / 50% Existing	2		1	Credit 8.2	Daylight & Views, Views for 90% of Spaces	
1 Credit 2.1	Renewable Energy, 5%	-	1					
1 Credit 2.2			1	3 1	1	Innova	ation & Design Process Possible Points	s
1 Credit 2.3			1	Y ?				
Credit 3	Additional Commissioning		1	1		Credit 1.1	Innovation: Educational Case Study	
Credit 4	Ozone Depletion		1	1		Credit 1.2	Innovation: Exceed Water Use Reduction by an additional 10%	
Cleuit 4					-	1		
1 Credit 5	Measurement & Verification		1	1		Credit 1.3	Innovation in Design: Exceed Recycled content by an additional 25%	

Table 10.6: LEED Scorecard for SLCC with green roof and DOAS system designs.

10.2.1. ENERGY AND ATMOSPHERE CREDIT 1

The DOAS system in combination with the original cool roof produces an expected total energy cost savings of \$24,344/yr. Table 10.7 shows the difference between regulated and unregulated costs that factor into Table 10.8.

Design Case LEE	ED-NC EA CR 1 Summary	(Green	Roof, DO	AS System)	
End Use	Energy Type	Electric [kWh]	Oil [kBtu]	Energy Use [10 ³ Btu]	Cost
Regulated					
Lighting	Electric	223,053		761,057	\$20,164
Space Heating	Oil		24,233	24,233	\$336
Space Heating	Electric				
Space Cooling	Electric			1,544,992	\$40,934
Fans / Pumps	Electric	103,556		353,333	\$9,361
Subtotal Regulated (DEC')	326,609	24,233	2,683,616	\$70,795
Non-Regulated					
Receptacles	Electric	978,965		3,340,229	\$23,226
Space Heating	Oil		15,030	15,030	\$158
Space cooling	Electric		1,294,311	1,294,311	\$26,090
Fans / Pumps	Electric	23155		79,005	\$1,593
Subtotal Non-Regulated		1,002,120	1,309,341	4,728,574	\$51,067
Total Building		1,328,729	1,333,574	7,412,190	\$121,862
DEC''				2,683,616	\$70,795

 Table 10.7: Summary of energy use in the SLCC for the DOAS system and green roof.

Design Case LE	ED-NC EA CR	1 Summary	(Green F	Roof, DOAS	System)	
Energy & Cost Summary by Fuel	DEC" Use [10 ³ Btu]	DEC" Cost [\$]	ECB' Use [10 ³ Btu]	ECB' Cost [\$]	DEC" / Energy %	ECB' Cost %
Electricity Oil	2,659,383 23,595	\$70,460 \$327	4,266,915 1,057,210	\$113,051 \$14,642	62.3% 2.2%	62.3% 2.2%
Total	2,682,978	\$70,786	5,324,125	\$127,693		
		Percent S	Savings = 100 >	« (ECB' \$ - DEC''	\$) / ECB' \$ =	44.6%
			Crea	Credit 1 Poi dit 1 Points Poss	ints Earned = ibly Earned =	6 0

Table 10.8: EA Credit 1 points earned with DOAS system and green roof.

10.2.2. SUSTAINABLE SITES CREDIT 6.1

The addition of the green roof has a significant impact on the amount of stormwater drained from the SLCC site. It accounts for an approximately 25% reduction of impervious area compared to the original SLCC design with the cool roof (Table 6.4) and an approximately 5% reduction of impervious area compared to the pre-construction site. This is not enough, however, to earn the LEED SS CR 6.1 Point as there needs to be a 25% reduction in impervious area on the site compared to the pre-construction site. This can be achieved by replacing the parking pavement with pervious concrete (Figure 10.1), thus earning the LEED point (Table 10.9). The total reduction in impervious area can be improved to over 42% if all stormwater drainage from the roof is captured and used to water the roof (Table 10.10). This could potentially be worthy of an Innovation & Design Credit point, but this LEED analysis conservatively assumes that this point would not be awarded.

Figure 10.1: Pervious concrete.

James Lee Sorenson Language and Communication Center

	Runoff	Runoff Undeveloped Site Green Roof, Perv. I			Parking	
	Coefficient	Area [SF]	Runoff [CF]	Area [SF]	% of Total	Runoff [CI
Total Pervious:	0.00	26665	0	44430	57.3%	0
Total Impervious:	1.00	50935	163968	33171	42.7%	106781
TOTAL		77600	163968	77600		122427

 Table 10.9: Sustainable Sites Credit 6.1 calculation for green roof, pervious parking.

	Runoff	Runoff Undeveloped Site			Green Roof, Perv. Parking		
	Coefficient	Area [SF]	Runoff [CF]	Area [SF]	% of Total	Runoff [CF	
Asphalt/Concrete:	0.95	42550	130127	22260	28.7%	68076	
Pervious Concrete	0.60	0	0	8100	10.4%	15645	
Building (roof):	0.00	0	0	9130	11.8%	0	
Grass:	0.25	28050	22574	13400	17.3%	10784	
Green Roof:	0.00	0	0	24710	31.8%	0	
Other:	0.50	7000	11267	0	0.0%	0	
Total Pervious:	0.00	26665	0	53103	68.4%	0	
Total Impervious:	1.00	50935	163968	24497	31.6%	78860	
TOTAL		77600	163968	77600		94505	
TOTAL		77600	102900	77600		94505	

 Table 10.10: Sustainable Sites Credit 6.1 calculation for proposed design and stormwater reuse.